Search results

1 – 3 of 3
Article
Publication date: 18 March 2019

Roland Eichardt, Daniel Strohmeier, Alexander Hunold, René Machts, Jens Haueisen, Gregor Oelsner, Christian B. Schmidt, Volkmar Schultze, Ronny Stolz and Uwe Graichen

The purpose of this paper is to present a simulation study using a model of a new optically pumped magnetometer sensor for application in the field of magnetoencephalography. The…

Abstract

Purpose

The purpose of this paper is to present a simulation study using a model of a new optically pumped magnetometer sensor for application in the field of magnetoencephalography. The effects of sensor distance and orientation on the measurement information and the sensitivity to neuronal sources are investigated. Further, this paper uses a combinatorial optimization approach for sensor placement to measure spontaneous activity in the region of the occipital cortex.

Design/methodology/approach

This paper studies the effects of sensor distance and orientation on sensitivity to cortical sources and measurement information. A three-compartment model of the head, using the boundary element method, is applied. For sensor setup optimization, a combinatorial optimization scheme is developed.

Findings

The sensor distance to sources considerably affects the sensitivity and the retrieved information. A specific arrangement of four sensors for measuring spontaneous activity over the occipital part of the head is optimized by effectively avoiding position conflicts.

Research limitations/implications

Individual head models, as well as more detailed noise and signal models, will increase the significance for specific-use cases in future studies.

Originality/value

Effects of sensor distance and orientation are specifically evaluated for a new optically pumped magnetometer. A discrete optimization scheme for sensor optimization is introduced. The presented methodology is applicable for other sensor characterization and optimization problems. The findings contribute significantly to the development of new sensors.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 38 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 11 September 2009

Roland Eichardt, Daniel Baumgarten, Luca Di Rienzo, Sven Linzen, Volkmar Schultze and Jens Haueisen

The purpose of this paper is to examine the localisation of ferromagnetic objects buried in the underground. More specifically, it deals with the reconstruction of the…

Abstract

Purpose

The purpose of this paper is to examine the localisation of ferromagnetic objects buried in the underground. More specifically, it deals with the reconstruction of the XY‐positions, the depths (Z‐positions), the number, and the extension of the objects based on geomagnetic measurements. This paper introduces a minimum‐norm reconstruction approach and evaluates its performance in a simulation study.

Design/methodology/approach

A minimum‐L2‐norm estimation based on the truncated singular value decomposition method with lead field weighting is proposed in order to localise geomagnetic sources. The sensor setup and positions are taken from real measurements. The source space is formed by an automatically generated grid. At each grid point, a magneto‐static dipole is assumed.

Findings

Sources with different depths and XY‐positions could be successfully reconstructed. The proposed approach is not overly sensitive to errors/noise in measurement values and sensor positions.

Originality/value

The approach described in this paper can be used for applications like geoprospection, archaeology, mine clearing, and the clean‐up of former waste deposits.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 28 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 January 1954

Aarhus Kommunes Biblioteker (Teknisk Bibliotek), Ingerslevs Plads 7, Aarhus, Denmark. Representative: V. NEDERGAARD PEDERSEN (Librarian).

Abstract

Aarhus Kommunes Biblioteker (Teknisk Bibliotek), Ingerslevs Plads 7, Aarhus, Denmark. Representative: V. NEDERGAARD PEDERSEN (Librarian).

Details

Aslib Proceedings, vol. 6 no. 1
Type: Research Article
ISSN: 0001-253X

1 – 3 of 3